Одной из основных причин поражения электрическим током людей и животных в условиях сельскохозяйственного производства является замыкания токоведущих частей на землю или на корпуса электрических машин, трансформаторов и других электрических аппаратов и приборов. Вследствие того, что электрические установки в сельском хозяйстве работают в неблагоприятных условиях большое число их подвергается воздействию атмосферных осадков, эксплуатируется в пыльной, влажной или агрессивной среде и т.п, может разрушаться изоляция проводок, образовываться токопроводящая влажная и пыльная пленка на изоляторах, конденсироваться влага между обмоткой и корпусом электрической машины, на корпусах электроустановок появляется потенциал. В ряде случаев такой потенциал представляет большую опасность для обслуживающего персонала и животных.
Следует указать основные причины поражения электрическим током. Прикосновение к токоведущим частям, находящимся под напряжением. Прикосновение к нетоковедущим, но токопроводящим частям электрооборудования, оказавшимся под напряжением из-за неисправности изоляции защитных устройств, попадание под шаговое напряжение.
Особенно необходимо выделить нарушение правил техники безопасности и правил технической эксплуатации электроустановок. По условиям безопасности электроустановки делятся на две категории напряжением до 1 кВ, которые в основном питаются от трехфазных сетей трехпроводной с изолированной нейтралью и четырехпроводной с глухозаземленной нейтралью и напряжением выше 1 кВ трехпроводной с изолированной нейтралью и трехпроводной с глухозаземленной нейтралью. Для защиты от поражения в электроустановках применяются следующие меры и способы:
- защитное заземление;
- защитное зануление;
- защитное отключение;
- обеспечение малых напряжений;
- защитное разделение сетей;
- контроль и профилактика повреждений изоляции.
Заземление электроустановок
Заземлением электроустановки называют преднамеренное электрическое соединение ее с заземляющим устройством. Заземляющее устройство состоит из заземлителя и заземляющих проводов. Заземлителем называются металлический стержень, провод, лист, полоса или металлический предмет другой формы, соединяющий заземленную часть электроустановки с землей. Устройство, состоящее из ряда заземлителей, соединенных между собой электрически при помощи металлической полосы или провода, образует заземляющий контур или контур заземления. Заземляющим проводником называются металлические проводники, которыми заземляемые части электроустановки соединяются с заземлителем или контуром заземления. Различают защитное и рабочее заземление.Защитным заземлением является соединение с заземлителем контуром металлических частей электроустановки, нормально изолированных от частей находящихся под напряжением, служащее для того, чтобы обезопасить человека от поражения электрическим током в случае прикосновения к частям электроустановки, оказавшимся под напряжением вследствие повреждения изоляции. Действие защитного заземления заключается в том, что оно снижает напряжение между корпусом оборудования, оказавшимся под напряжением, и землей до безопасного значения. Если корпус электроустановки не заземлен и оказался в контакте с фазой, то прикосновению к фазе. Если же корпус заземлен, его потенциал относительно земли не превышает безопасного значения. Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1 кВ с изолированной нейтралью и в сетях напряжением 1 кВ и выше с любым режимом заземления нейтрали.
Рабочее заземление применяют для обеспечения нормальной работы электроустановок. К рабочим заземлениям относят заземления нейтрали генераторов и трансформаторов, заземление средств грозозащиты и т.д. Основной электрической характеристикой заземлителя или контура заземления является сопротивление растеканию тока. Если представить заземлитель в виде полусферы то ток в земле растекается во все стороны от этого заземлителя в радиальных направлениях. Наибольшим потенциалом обладает электроустановка. Если пренебречь падением потенциала в заземляющем проводе, потенциал заземлителя окажется равным потенциалу электроустановки. По мере удаления от заземлителя потенциал снижается. На расстоянии более 20 м слои грунта имеют нулевой потенциал. Сопротивление повторного заземления нулевого провода не должно быть более 10 Ом, а электроустановок, сопротивление заземляющих устройств которых не превышает 10 Ом, не более 30 Ом. Для заземлений электроустановок разных напряжений и назначений следует, когда это возможно, создавать одно общее устройство заземления. В электрических установках должны заземляться: станции и кожухи электрических машин, трансформаторов, осветительной арматуры и других аппаратов; приводы электрических аппаратов рубильников, разъединителей и т.д., вторичные обмотки измерительных трансформаторов тока и напряжения; каркасы распределительных щитов, шкафов и сборок металлически подстанций и открытых распределительных устройств; корпуса кабельных муфт, оболочки кабелей и проводов; трубы электропроводок. Заземление электроустановок не требуется при номинальном напряжении 36 В и ниже для переменного исключением взрывоопасных установок и электроустановок с двойной изоляцией.
Выполнение заземлений
Для заземляющих устройств по возможности используют естественные заземлители, проложенные в земле водопроводные, канализационные и другие трубопроводы, кроме трубопроводов горючих жидкостей и газов; металлические конструкции и арматура железобетонных изделий, имеющие надежное соединение с землей; свинцовые оболочки кабелей, проложенных в земле. Для заземления нельзя применять алюминиевые оболочки кабелей и алюминиевые неизолированные провода, так как в почве они окисляются, а окись алюминия обладает изоляционными свойствами.При отсутствии естественных заземлителей делают искусственные заземлителей делают искусственные заземлители вертикально закладывают в землю стальные трубы длинной 2,5 -3 м, диаметром 30-50 мм с толщиной стенок не менее 3,5 мм, металлические стержни диаметром 10-12 мм и длинной 10 м; угловую сталь с толщиной полок не менее 4 мм. Применяют также горизонтальные протяженные заземлители из стальной прямоугольной полосы, круглой стали и др. В качестве искусственных заземлителей в агрессивных почвах щелочных, кислых и др, где они подвергаются усиленной коррозии, применяется медь, омедненный или оцинкованный металл. Вертикальные заземлители забивают на расстоянии не менее 2,5-3 м друг от друга в землю таким образом, чтобы верхний конец заземлителя находился ниже поверхности земли на 0,6-0,7 м. Причем, чем глубже заложен заземлитель, тем лучше, так как на большей глубине земля не промерзает и не высыхает, а удельное сопротивление грунта практически не изменяется в зависимости от времени года.Забитые в землю заземлители соединяют стальной полосой толщиной не менее 4 мм, уложенной также на ребро, заземляющие полосы соединяют между собой сваркой внахлест, присоединение полос к заземлителям выполняют также сваркой. Горизонтальные заземлители укладываются на ребро в траншеи глубиной 0,6-0,7м. После монтажа заземляющего устройства траншеи засыпают землей, не содержащей камней и мусора и утрамбовывают. В помещениях заземляющую проводку прокладывают в виде магистралей заземления, имеющих не менее двух соединений с заземлителем. Заземляющую проводку следует располагать так, чтобы она была доступна для осмотра и надежно защищена от механических повреждений. На полу помещений проводку укладывают в специальные канавки. В помещениях, где возможно выделение едких паров и газов, а также в помещениях с повышенной влажностью заземляющие проводники прокладывают вдоль стен с помощью скоб на расстоянии 10 мм от стены. В качестве проводников для внутренний сети заземления используют стальные полосы толщиной не менее 3 мм и сечением не менее 24 мм или круглые стальные проводники диаметром не менее 5 мм. Каждая заземляемая часть электроустановки должна быть присоединена к заземлителю или заземляющей магистрали с помощью отдельного проводника. Последовательное включение нескольких заземляемых частей электроустановки в заземляющий проводник запрещается. Иногда бывает недостаточным раздельное заземление корпусов оборудования. Так, для случая, когда они расположены рядом, при пробое одной фазы на корпус 1, а другой на корпус 2 оба корпуса окажутся под напряжением, равным примерно половине линейного. Из-за недостаточного значения токов предохранители могут не перегорать и корпуса могут длительно оставаться под опасным напряжением. Соединение корпусов между собой проводником превышает однофазные замыкания в двухфазное короткое замыкание и приводит к безусловному перегоранию по крайней мере одного из предохранителей.
В случае ошибочного применения защитного заземления в сетях напряжением до 1 кВ с заземленной нейтралью заземление не обеспечивает надежной защиты.
Заземляющие проводники присоединяют к заземляемым металлическим корпусам, кожухам электрооборудования сваркой или болтовыми соединениями. Болтовые соединения зачищают стальной щеткой до блеска и смазывают нейтральным вазелином, после затяжки болта контактное соединение покрывают лаком. Заземление электрооборудования, которое часто подвергается перестановке, подвержено вибрации или установлено на движущихся частях технологического оборудования, выполняется гибким проводом. При этом должны быть приняты меры против ослабления контактов, поставлены контргайки, разрезанные или замковые шайбы и т.п.
Проверка заземляющих устройств
Для определения технического состояния заземлящего устройства должны систематически производиться следующие работы, внешний осмотр видимой части заземляющего устройства; осмотр и проверка наличия цепи между заземлителем и заземляемыми элементами, измерение сопротивления заземляющего устройства, проверка надежности соединений естественных заземлителей, измерение сопротивления петли фаза-нуль, измерение удельного сопротивления грунта для опор линий электропередачи напряжением выше 1 кВ, выборочное вскрытие грунта для осмотра находящихся в земле элементов заземляющего устройства.Проверка наличия цепи между заземлителем и заземленным оборудованием производится для выявления непрерывности и надежности цепи заземления, в которой не должно быть обрывов и неудовлетворительных контактов. В простых неразветвленных сетях измерение сопротивления переходных контактов производится непосредственно между заземлителем и каждым заземляемым элементом. В сложных разветвленных сетях измерение сопротивления производится сначала между заземлителем и отдельными участками заземляющей магистрали, а затем между этими участками заземляющей магистрали, а затем между этими участками заземляющей магистрали, а затем между этими участками и заземленными элементами. Перед измерением необходимо убедиться в отсутствии напряжения на корпусах проверяемого оборудования. Для измерений применяют специально предназначенный для таких проверок омметр, а также измерительные мосты или измерительные сопротивления. Непосредственное измерение сопротивления заземляющих устройств является основным методом контроля их состояния. Для защиты сетей до 1 кВ с изолированной нейтралью от перенапряжений служат устанавливаемые на трансформаторах пробивные предохранители. Их надежная работа определяется правильной сборкой и постоянным поддержанием в надлежащем техническом состоянии. Поэтому проверку предохранителей необходимо производить как перед вводом в эксплуатацию, так и при каждом ремонте оборудования, перестановке предохранителей или предположении об их возможном срабатывании. При осмотре трансформатора производиться также осмотр пробивного предохранителя.
В электрических сетях до 1 кВ с заземленной нейтралью перед сдачей в эксплуатацию объектов и периодически производиться проверка соответствия сети требованиям обеспечения отключения аварийного участка. Для определения тока однофазного замыкания необходимо измерить полное сопротивление цепи однофазного замыкания на корпус или землю. Простейшим является способ измерения сопротивления петли фаза-нуль при помощи амперметра и вольтметра. Каждое заземляющее устройство, находящееся в эксплуатации, должно иметь паспорт, включающий схему заземления, основные технические данные о результатах последних измерений и проверок, сведения о характере произведенных ремонтов и об изменениях внесенных в устройств заземления.Защитное зануление. Основной особенностью устройства заземлений электрических приборов и аппаратов, работающих у потребителя в распределительных сетях 380/220 В, является применение так называемого защитного зануления. Для каждого такого аппарата или прибора заземление не выполняют. Защитным занулением называется преднамеренное соединение проводящих частей электроустановок, нормально не находящихся под напряжение, но могущих оказаться под напряжением, с глухозаземленной нейтралью генератора трансформатора в сетях многофазного тока, или с глухозаземленной средней точкой источника в трехпроводных сетях постоянного тока. Соединение зануляемых частей электроустановок с заземленной нейтралью выполняется нулевым защитным проводом. К нулевому проводу присоединяются корпуса и кожухи оборудования или отдельные его части.
Отсутствие или неисправность, а также неправильное устройство защитного зануления могут быть причиной поражения электрическим током людей и животных или возникновения пожара. Так, при отсутствии защитного зануления и прикосновении человека к находящемуся под напряжением корпусу электроприемника образуется цепь для прохождения тока через тело человека, его обувь, землю и заземление нейтрали. Защитное действие зануления определяется тем, что при металлическом замыкании какой либо фазы на корпус значения протекающего в ней тока достаточно, чтобы перегорела плавкая вставка предохранителя отключился автоматический выключатель. Отсутствие защитного зануление электроприемника и, как следствие, прохождение тока замыкания по случайному пути в местах плохих контактов могут вызвать искрения и местные нагревы, которые является причинами загораний и пожаров. При эксплуатации надежности и целостность защитного зануления и его состояние должны проверять внешним осмотром не реже 1 раза в 6 мес, а в сырах и особо сырых помещениях не реже 1 раза в 3 мес, измерения сопротивления растекания тока не реже 1 раза в год, а также после каждого капитального ремонта и длительного бездействия установки. Результаты проверки должны записываться в соответствующий журнал.
Защитное отключение практически мгновенное с полным временем не более 0,2 с автоматическое отключение от сети всех фаз электроприемника или участка электропроводки при повреждении в них изоляции или при других аварийных режимах с целью защиты человека от поражения электрическим током. Защитное отключение может применяться как в дополнение к сетям заземления и зануления, так и в качестве единственной и основной меры защиты. Устройства защитного отключения рекомендуется применять только в электроустановках до 1 кВ следующих видов:
- В передвижных с изолированной нейтралью в условиях, когда сооружение заземляющего устройства с необходимыми параметрами затруднено. Защитное отключение в таких сетях может применяться в виде самостоятельной защиты и в сочетании с заземлением.
- В стационарных с изолированной нейтралью для защиты ручных электрических машин.
- В стационарных и передвижных с различными режимами нейтрали в условиях повышенной опасности поражения электрическом током и взрывоопасности.
- В стационарных с глухозаземленной нейтралью на отдельных удаленных потребителях электроэнергии и потребителях большой мощности, на которых защита занулением недостаточно эффективна, т.е. защитное зануление не может обеспечить требуемой кратности тока однофазного замыкания на землю.
Для защитного отключения используются специальные устройства защитного отключения УЗО, схемы и конструкции которых определяются характером электроустановки, режима заземления нейтрали и др. Может использоваться также специальное защитное реле, устройстово которого аналогично высокочувствительному реле напряжения с размыкающими контактами, включенными в цепь магнитного пускателя, например электродвигателя.
Для обеспечения надежной работы устройств защитного отключения после ввода в эксплуатацию должны производится их частичные и полные плановые проверки. Полные плановые проверки проводятся не реже 1 раза в три года и, как правило. Одновременно с ремонтом соответствующих первичных цепей и силового оборудования. В объем полных проверок, кроме определяемых конкретным типом устройства испытаний, должны входить, испытание изоляции, осмотр состояния аппаратуры и коммутации; проверка уставок и основных параметров защиты, опробования устройства в действии.
Частичные проверки производятся между полными проверками с периодичностью, зависящей от местных условий. При этом измеряется сопротивление изоляции, производится осмотр аппаратуры и вторичных цепей, опробование в действии. В случае отказа в работе или неправильного действия устройства защитного отключения производят дополнительные проверки по специальным программам.
Обеспечение недоступности токоведущих частей
Ограждение токоведущих частей и расположение их на недоступной высоте. Помимо токоведущих частей, имеющих электрическую изоляцию по всей длине, в электроустановках применяют неизолированные токоведущие части, которые закрепляют на изоляторах в отдельных точках. Для предотвращения случайного прикосновения из закрывают сплошными ограждениями в виде крышек например, присоединительные зажимы электродвигателей, кожухов у электрических аппаратов, шинопроводов или сетчатыми ограждениями в распределительных устройствах либо располагают на определенной высоте провода линий электропередачи и др. Ограждения делают из диэлектрика или из металла. Они должны располагаться на определенном расстоянии от неизолированных токоведущих частей, зависящем от напряжения электроустановки и конструкции ограждения. Так, в закрытых РУ это расстояние для сплошных ограждений должно составлять при напряжении 6 кВ-120 мм, 10 кВ-150 мм, 35 кВ-320 мм, а для сетчатых соответственно 190, 220 и 390 мм.Наряду со стационарными применяют временные ограждения, назначения которых при работах в электроустановках состоит в предупреждении опасного случайного прикосновения к находящимся по напряжением токоведущим частям, расположенным вблизи места работы. Они предназначаются также для закрытия проходов в помещения, куда вход работающим запрещен. Такими ограждениями могут быть специальные сплошные или решетчатые деревянные щиты, ширмы и т.п, резиновые или пластмассовые колпаки, надеваемые на ножи однополюсных разъединителей для предотвращения их ошибочного включения, изолирующие накладки пластины из резины, текстолита и им подобных материалов, используемые для покрытия ножей отключенного рубильника или разъединителя и препятствующие их ошибочному включению.
Ограждения в виде щитов, ширм применяются в электроустановках всех напряжений. Их устанавливают так, чтобы расстояние от них до токоведущих частей установок напряжением до 15 кВ было не меньше 0,35 м.Случайное прикосновение к находящимся под напряжением токоведущим частям исключено в получивших широкое применение аппаратах закрытых конструкций, выключателях и переключателях, рубильниках и переключателях с рычажным приводом у которых открытый рубильник располагается за панелью распределительного щита, а рукоятка управления на его лицевой стороне, магнитных пускателей серии П, установочных автоматических выключателях типов АП-50, А-3000 и др. В тех случаях, когда изоляция или ограждение токоведущих частей нецелесообразны или невозможны, их размещают на недоступной высоте. Примером могут служить неизолированные провода воздушных линий электропередачи, прокладываемых вне зданий, которые действительно невозможны оградить. На воздушных линиях расстояние от земли до низшей точки провеса проводов нормируется.
На линиях напряжением до 1 кВ габарит должен быть не менее 6 м, наименьшее допустимое расстояние от земли до проводов ввода в дом при напряжении 380/220В-2,75м, расстояние до вводного пролета, пересекающего пешеходную дорожку, или в месте пересечения с непроезжей частью улиц, ответвлениями от ВЛ должно быть не менее 3,5 м также равным 3,5 м должно быть расстояние от земли до изоляторов выводов напряжением до 1 кВ на мачтовых и комплектных трансформаторных подстанций. На воздушных линиях выше 1 кВ и до 110 кВ расстояние от проводов до земли должно составлять 7 м населенная местность, в ненаселенной местности 6 м, в труднодоступной 5м. В местах пересечения автомобильных и железнодорожных дорог при напряжении до 110 кВ габарит линии должен быть соответственно не менее 7 и 7,5м. Габарит до изоляторов выводов напряжением 6-10 кВ на трансформаторных подстанциях не менее 4м. Внутри производственных зданий в цехах, мастерских, гаражах, фермах неогражденные токоведущие шины должны прокладываться на высоте не менее 3,5 от пола.
Блокировки безопасности
Надежным средством защиты персонала от прикосновения к токоведущим частям, находящимся под напряжением, является блокировка. В общем случае блокировками называются устройства, исключающие возможность опасных ошибок в работе. Блокировки могут быть электромагнитными и механическими. Примером электромагнитной блокировки может служить блокировка двери ячейки РУ выше 1 кВ с выключателем и разъединителем, которая позволяет открыть дверь ячейки только при отключенных выключателе и разъединителе, через которые в ячейку подается напряжение. При механической блокировке, например, при снятии защитного кожуха размыкается штепсельный разъем и подача напряжения к устройствам под кожухом прекращается. Особая роль при эксплуатации электроустановок отводится оперативной блокировке, исключающей ошибочные операции коммутационной аппаратуры, в результате которых может произойти не только авария, но и несчастный случай. Такими операциями могут быть, отключение и включение разъединителями тока нагрузки при включенном выключателе, включение заземляющих ножей на ошиновку, находящуюся под напряжением.В сельских электроустановках применяют в основном механические блокировки разъединителей с непосредственной рычажной связью между приводами выключателя и разъединителя. Кроме того, в ячейках типа КРН-10 оборудуется блокировка двери или сетчатого ограждения ячейки со стороны масляного выключателя с разъединителем, исключающая возможность открывания двери или сетчатого ограждения ячейки при включенном разъединителе.
Мачтовые и комплексные трансформаторные подстанции 6(10)/0,38 кВ, включение которых осуществляется через выносные разъединители, имеют замок- блокировку системы Гинодмана с приводом главного рубильника 0,38 кВ, которая не позволяет проводить операции включения и отключения разъединителя при включенном главном рубильнике.
Применение малых напряжений, защитное разделение сетей и контроль изоляции
Малым напряжением называют номинальное напряжение не более 42 В между фазами и по отношению к земле, применяемое в электрических установках для обеспечения электробезопасности. Область применения малых напряжений невелика, так как уменьшение напряжения связано с увеличением тока, сечений проводов и токоведущих частей электрических машин и аппаратов. Она ограничивается различными инструментом, сетями освещения, некоторыми бытовыми приборами и т.д. Источником малого напряжения может быть батарея гальванических элементов, аккумулятор выпрямительная установка и трансформатор. Наиболее часто в качестве источника малого напряжения используют понижающие трансформаторы с вторичным напряжением 12-35 В. Для обеспечения невозможности перехода тока из первичной обмотки во вторичную, питающую электроприемники, корпус трансформатора заземляют и удаляют его от электроприемников на расстояние не менее 5 м. Для большей безопасности на вторичной стороне трансформатора следует применять хорошо изолированные провода, а для переносных электроприемников на расстояние 5 м. Для большей безопасности на вторичной стороне трансформатора следует применять хорошо изолированные шланговые провода. При работе в металлических резервуарах и на токопроводящих конструкциях трансформаторы необходимо устанавливать вне емкостей и конструкций, а их корпуса соединять с этими объектами с целью выравнивания потенциалов на трансформаторе и конструкции.Защитное разделение сети деление электрической сети большой протяженности на короткие участки
Оно осуществляется путем подключения отдельных электроприемников через разделительный трансформатор, защитное действие которого основано на том, что он отделает электроприемник от первичной сети и сети заземления. Вследствие этого при пробое изоляции в электроприемнике на корпус опасности для человека не возникает. Разделительные трансформаторы должны удовлетворять следующим требованиям, первичное напряжение до 1 кВ, а вторичные до 380В. При этом коэффициент трансформации может быть 1:1, от трансформатора может питаться только один электроприемник по сравнительно коротким проводам с надежной изоляцией. Конструкция и изоляция трансформатора должны иметь повышенную надежность, корпус трансформатора должен быть заземлен или занулен в зависимости от режима работы нейтрали питающей сети. Заземлять или занулять вторичную обмотку трансформатора или питающийся от него электроприемник запрещается. Разделительные трансформаторы применяют, например для питания электрифицированного инструмента, который из-за сравнительно большой мощности трудно выполнить на пониженном напряжении.Контроль изоляции
Контроль изоляции - это измерение ее активного омического сопротивления с целью обнаружить дефекты и предупредить замыкания на землю и короткие замыкания. Существует два вида контроля, периодический и постоянный. Периодический контроль состояния изоляции электроустановок напряжением до 1 кВ производится не реже 1 раза в 3 года, а также перед вводом электроустановок в эксплуатацию и после длительного пребывания в нерабочем состоянии. Измерение изоляции осуществляется при помощи омметра или мегаометра. Непрерывный контроль сопротивления изоляции в сетях переменного тока выше 1 кВ с изолированной или заземленной через дугогасящий реактор нейтралью, в сетях переменного тока до 1 кВ с изолированной нейтралью и в сетях постоянного тока должен выполняться автоматически с действием на сигнал при снижении сопротивления изоляции ниже заданного значения, с последующим контролем напряжения при помощи показывающего прибора с переключением.Более подробную информацию можете получить у наших специалистов по многоканальному телефону. Опыт работы 20 лет на электротехническом и строительном рынке.